Archive
In New Quantum Experiment, Effect Happens Before Cause

A real-world demonstration of a thought experiment conducted at the University of Vienna, has produced a result that is somewhat befuddling to people with what the lead researcher calls a “naïve classical world view.” Two pairs of particles are either quantum-entangled or not. One person makes the decision as to whether to entangle them or not, and another pair of people measure the particles to see whether they’re entangled or not.
The head-scratcher is: the measurement is made before the decision is made, and it is accurate. “Classical correlations can be decided after they are measured,” says Xiao-song Ma, the writer of the study. Entanglement can be created “after the entangled particles have been measured and may no longer exist.”
The finding can be integrated into potential quantum computers, one hopes. Causality, clearly, is a quaint, irrelevant concept.
[Nature]
Neutrino Beam Carries Message Through 240 Meters Of Solid Rock

The particle accelerator at Fermilab in Illinois was used to produce a neutrino beam with an encoded word to an underground detector 1 kilometer away
One of the earliest demonstrations of the Samuel Morse’s telegraph was used to bring updates of the Democratic National Convention in Baltimore to lawmakers in Washington D.C. The year was 1884, and newspapers all over the world were stunned at this new way to instantaneously transmit information over long distances. Paris’ Galignani’s Messenger remarked, “This is indeed the annihilation of space.” Now scientists have tested a new type of communication that conquers matter. Scientists have beamed a message carried by neutrinos, particles so small they pass through solid rock, to an underground detector about a kilometer away. Neutrinos could one day be used to communicate to submarines at depths that radio waves can’t penetrate, or even send messages right through the Earth’s core.
Neutrinos are naturally-occurring particles created through radioactive decay. They are really, really small. In fact, until recently they were thought to have no mass at all. But they do, somewhere between a ten-millionth and a millionth the mass of an electron. And unlike protons and electrons, neutrinos don’t have a charge. Their electrical neutrality allows them to pass vast distances through matter without being affected by it. The Earth is continually awash with neutrinos thrown off by the sun – each second about 65 billion solar neutrinos pass through every square centimeter of the Earth.
The scientists created the neutrino beam at the Fermilab Tevatron particle accelerator in Batavia, Illinois. Smashing protons against a target, in this case a wall of carbon, the protons break down into short-lived particles such as kaons and pions, which then break down further into muons, which break down into neutrinos. A steady flow of (extremely) accelerated muons produces a beam of neutrinos. Detecting neutrinos works the opposite way. When they interact with matter they emit easily detectable muons.
The so-called NuMI (Neutrinos at the Main Injector) beam was aimed at a detector behind 240 meters of solid rock. But for the same reason they can pass through matter, neutrinos are difficult to detect. To maximize the chance of a neutrino interaction the detector in the cave was stacked with dense materials including carbon, lead and iron. Even so, only about one out of every 10 billion neutrinos passing through the detector caused a detectable event, according to Dan Stancil, head of Electrical and Computer Engineering at North Carolina State University and the study’s lead author.
Schematic of the particle accelerator and the detector, known as Minerva.
To encode a message, the beam was turned on and off to represent the binary “1” and “0,” respectively. Trillions of neutrinos were sent with each pulse so that detection was guaranteed. In this way they encoded the word “neutrino.”
So will those areas in the office with bad cell phone reception be a thing of the past? Probably not for a while, but possibility for the neutrino beam would be to send communications to submarines deep beneath the ocean surface. Radio transmissions don’t travel well through water so fast communication with submarines is only possible near the surface, exactly where submarines don’t want to be during covert operations. The subs can still receive messages down in the deep but the extreme low frequency waves necessary to penetrate the water transmits at a clunky 1 bit per minute. In 2009 Virginia Tech physicist Paul Huber suggested that neutrino beams could transmit data to subs at about 100 bits per second. However, the formidable technology needed to produce the beams means communication would only be one way. And then there’s the problem of turning a sub into a neutrino detector. Huber proposes that it might be possible to coat the sub’s hull with a thin muon detector. He also mentions that the light caused by muons moving through the seawater could be used as a signal. Either way, we’re probably stuck with radio transmissions for a while yet.
In addition to deep sea communications, neutrinos could potentially be used to transmit messages straight through the Earth’s core to the other side of the planet. It could also solve a limitation we saw with the moon missions. Whenever the command module went around the far side of the moon it experienced a communication blackout. In the future, human and robotic missions to space needn’t worry if they’re receiving signals from a neutrino transmitter.
Neutrinos caused a stir in the quantum mechanics field last year when they were alleged to have broken Einstein’s speed limit to travel faster than light. Turns out to have been a break with careful experimentation instead. The current demonstration, with a message Morse code-like in its simplicity, could one day prove to be just as revolutionary.
http://singularityhub.com/2012/03/26/neutrino-beam-carries-message-through-240-meters-of-solid-rock/
Shockingly Craven Behavior in Vaccine Experiment on Babies: Adding Drug to Improve Response
Monday, 02 April 2012 07:46

‘Babies are now being drugged with powerful medications to reduce potential pain and fever before being vaccinated with multiple vaccinations. This is said to aid sleep which according to experts maximizes the vaccines response.
Linda Franck and her colleagues at the University of California, San Francisco discovered that drugging and vaccinating 8 week old babies with multiple vaccinations in the afternoon helps them sleep better.’
CIA Mind Control Techniques: MK-ULTRA Program Brainwashing Experiments 1979 Documentary
Holometer experiment to test if the universe is a hologram
October 28, 2010 by Lisa Zyga
Enlarge
A conceptual design of Fermilab’s holometer. Image credit: symmetry magazine
(PhysOrg.com) — Many ideas in theoretical physics involve extra dimensions, but the possibility that the universe has only two dimensions could also have surprising implications. The idea is that space on the ultra-small Planck scale is two-dimensional, and the third dimension is inextricably linked with time. If this is the case, then our three-dimensional universe is nothing more than a hologram of a two-dimensional universe.
This idea of the holographic universe is not new, but physicists at Fermilab are now designing an experiment to test the idea. Fermilab particle astrophysicist Craig Hogan and others are building a holographic interferometer, or “holometer,” in an attempt to detect the noise inherent in spacetime, which would reveal the ultimate maximum frequency limit imposed by nature.
As Hogan explains in a recent issue of Fermilab’s symmetry magazine, the holometer will be “the most sensitive measurement ever made of spacetime itself.” Hogan and others have already built a one-meter-long prototype of the instrument. They have just begun building the entire 40-meter-long holometer and plan to start collecting data next year.
The holometer consists of two completely separate interferometers positioned on top of one other. In each interferometer, a light beam is split into two different parts that travel in different directions. After bouncing off a mirror, the light beams are brought back together where the difference in their phases is measured. Even the smallest vibration will interfere with the light’s frequency during its travels and cause the two light beams to be out of sync.
While interferometers have been used for more than 100 years, the key to the holometer is achieving extreme precision at high frequencies. The scientists say that the holometer will be seven orders of magnitude more precise than any atomic clock in existence over very short time intervals. By having two interferometers, the researchers can compare them to confirm measurements. In addition, the scientists are making sure that any vibration that is detected isn’t coming from the holometer itself. They will arrange sensors outside the holometer to detect normal vibrations, and then cancel these vibrations by shaking the mirrors at the same frequency.
After taking these precautions, any detected high-frequency noise could be the jitter of spacetime itself, or “holographic noise.” The noise is expected to have a frequency of a million cycles per second, which is a thousand times higher than what the human ear can hear, noted Fermilab experimental physicist Aaron Chou. If the experiment does find this holographic noise, it would be the first glimpse beyond our three-dimensional illusion and into the universe’s true two-dimensional nature at the Planck scale.
http://www.physorg.com/news/2010-10-holometer-universe-hologram.html
