One picture

December 4, 2013 1 comment

Lessons learned in life

November 11, 2013 Leave a comment

Wise words

October 31, 2013 1 comment

Lava World Baffles Astronomers: Planet Kepler-78b ‘Shouldn’t Exist’

October 31, 2013 Leave a comment

Kepler-78b is a planet that shouldn’t exist. This scorching lava world circles its star every eight and a half hours at a distance of less than one million miles — one of the tightest known orbits. According to current theories of planet formation, it couldn’t have formed so close to its star, nor could it have moved there.

Kepler-78b is a planet that shouldn’t exist. This scorching lava world, shown here in an artist’s conception, circles its star every eight and a half hours at a distance of less than one million miles. According to current theories of planet formation, it couldn’t have formed so close to its star, nor could it have moved there. (Credit: David A. Aguilar (CfA))

“This planet is a complete mystery,” says astronomer David Latham of the Harvard-Smithsonian Center for Astrophysics (CfA). “We don’t know how it formed or how it got to where it is today. What we do know is that it’s not going to last forever.”

“Kepler-78b is going to end up in the star very soon, astronomically speaking,” agrees CfA astronomer Dimitar Sasselov.

Not only is Kepler-78b a mystery world, it is the first known Earth-sized planet with an Earth-like density. Kepler-78b is about 20 percent larger than Earth, with a diameter of 9,200 miles, and weighs almost twice as much. As a result it has a density similar to Earth’s, which suggests an Earth-like composition of iron and rock.

Read more: http://www.sciencedaily.com/releases/2013/10/131030142915.htm

 

Not funny

October 10, 2013 Leave a comment

 

 

NASA’s Black-Hole-Hunter Catches Its First 10 Supermassive Black Holes

September 10, 2013 Leave a comment

Sep. 9, 2013 — NASA’s black-hole-hunter spacecraft, the Nuclear Spectroscopic Telescope Array, or NuSTAR, has “bagged” its first 10 supermassive black holes. The mission, which has a mast the length of a school bus, is the first telescope capable of focusing the highest-energy X-ray light into detailed pictures.

 

An optical color image of galaxies is seen here overlaid with X-ray data (magenta) from NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR). (Credit: NASA/JPL-Caltech)
 

The new black-hole finds are the first of hundreds expected from the mission over the next two years. These gargantuan structures — black holes surrounded by thick disks of gas — lie at the hearts of distant galaxies between 0.3 and 11.4 billion light-years from Earth.

“We found the black holes serendipitously,” explained David Alexander, a NuSTAR team member based in the Department of Physics at Durham University in England and lead author of a new study appearing Aug. 20 in The Astrophysical Journal. “We were looking at known targets and spotted the black holes in the background of the images.”

Additional serendipitous finds such as these are expected for the mission. Along with the mission’s more targeted surveys of selected patches of sky, the NuSTAR team plans to comb through hundreds of images taken by the telescope with the goal of finding black holes caught in the background.

 

Read more: http://www.sciencedaily.com/releases/2013/09/130909154918.htm

NASA’s Chandra Observatory Catches Giant Black Hole Rejecting Material

September 2, 2013 Leave a comment

Aug. 29, 2013 — Astronomers using NASA’s Chandra X-ray Observatory have taken a major step in explaining why material around the giant black hole at the center of the Milky Way Galaxy is extraordinarily faint in X-rays. This discovery holds important implications for understanding black holes.

Supermassive black hole Sagittarius A* at the heart of the Milky Way galaxy. (Credit: X-ray: NASA/UMass/D.Wang et al., IR: NASA/STScI)

New Chandra images of Sagittarius A* (Sgr A*), which is located about 26,000 light-years from Earth, indicate that less than 1 percent of the gas initially within Sgr A*’s gravitational grasp ever reaches the point of no return, also called the event horizon. Instead, much of the gas is ejected before it gets near the event horizon and has a chance to brighten, leading to feeble X-ray emissions.

These new findings are the result of one of the longest observation campaigns ever performed with Chandra. The spacecraft collected five weeks’ worth of data on Sgr A* in 2012. The researchers used this observation period to capture unusually detailed and sensitive X-ray images and energy signatures of super-heated gas swirling around Sgr A*, whose mass is about 4 million times that of the sun.

Read more: http://www.sciencedaily.com/releases/2013/08/130829142311.htm

Follow

Get every new post delivered to your Inbox.

Join 82 other followers